
Stat 343 Final Review Problems

Final Structure and Coverage

The final will have 2 kinds of questions:

1) conceptual questions to make sure you understand what’s going on.
2) some problems where you’re asked to do some math.

There will not be any R coding questions.

Conceptual Topics

• All the things from the midterm
• Things about confidence intervals, likelihood ratios, and p-values

Here are some examples:

Problem 1

If n = 1,000,000,000, is there an unbiased estimator with lower variance than the MLE? You could answer “yes”, “no”, or
“maybe”. Justify your answer.

Solution: I would accept either “no” or “maybe” as long as you’re talking about the right things.

For large n, if all the regularity conditions are satisfied, the variance of the MLE is the inverse of the Fisher information.
The Cramer-Rao Lower Bound states that the variance of any unbiased estimator must be at least as large as the inverse of
the Fisher information. Therefore, for large n, any unbiased estimator must have variance at least as large as the variance
of the MLE.

There are two places where this argument is a little shakey, so that you could argue the answer is “maybe”. First, the
result about the variance of the MLE is really asymptotic - the variance of the MLE approaches the inverse of the Fisher
information as the sample size goes to infinity. For any finite sample size, even 1,000,000,000, the variance of the MLE
could be larger than the inverse of the Fisher information. Second, we could be working with a probability distribution
where the regularity conditions are not satisfied, in which case the theorems do not apply.

Problem 2.

A 90% confidence interval for the average number of children per household based on a simple random sample is found to
be (0.7, 2.1). Because the average number of children per household, µ, is some fixed number in the population (at least, at
a particular moment in time when we conduct the study), it doesn’t make any sense to claim that P (0.7 ≤ µ ≤ 2.1) = 0.90.
What do we mean, then, by saying that this is a “90% confidence interval”? Can we ever make probability statements
about confidence intervals?

For 90% of samples, an interval calculated based on this procedure will contain the population mean µ. Before taking
the sample, the interval endpoints are random variables; denote them by A and B. The interval [A,B] is a random
interval, and we can write P (A ≤ µ ≤ B) = 0.9. We cannot make probability statements about the realized values of
random variables, so once we have taken a sample and observed a = 0.7 and b = 2.1 it does not make sense to write
P (0.7 ≤ µ ≤ 2.1) = 0.90 since there are no random variables inside the probability statement.
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Problem 3. TRUE or FALSE?

(a) TRUE or FALSE: A 95% confidence interval contains 95% of the population.

FALSE. A 95% confidence interval contains the parameter being estimated for 95% of samples.

(b) The central limit theorem states that as the sample size becomes large, the distribution of the sample
mean X̄ approaches a normal distribution. In class, we developed an approach to deriving a confidence
interval based on this result. TRUE or FALSE: For this interval estimation procedure, the actual coverage
probability may not be exactly equal to the nominal coverage probability.

TRUE. Since the interval was derived based on an approximation to the sampling distribution, the nominal coverage
probability may not be exactly equal to the true coverage probability.
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Example Worked Problems

The midterm will have problems roughly similar in content to the examples below.

Problem 1

Suppose that Y1, Y2, . . . , Yn are i.i.d. samples from a distribution with pdf given by

fY (y|θ) = 1+θy
2 for −1 < y < 1 and −1 < θ < 1. An investigator is interested in testing H0 : θ = 0 vs. HA : θ = 0.5.

(a) Plot a picture of the pdfs of Y1 under the null and alternative hypotheses. (One plot, two lines).
library(ggplot2)
f <- function(y, theta) {

(1 + theta * y) / 2
}

ggplot(data = data.frame(y = c(-1, 1)), mapping = aes(x = y)) +
stat_function(fun = f, args = list(theta = 0)) +
stat_function(fun = f, args = list(theta = 0.5), color = "orange") +
theme_bw()
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(b) Consider a sample of size n. Derive a general structure of the rejection region of the most powerful
test of size α = 0.05 for testing H0 : θ = 0 vs. HA : θ = 0.5. By “general structure”, I mean that you should
find the test statistic and indicate in general what the rejection region of the test looks like, but you do
not need to derive the exact critical value for the test.

The likelihood ratio statistic is

3



W = L(0|Y1, . . . , Yn)
L(0.5|Y1, . . . , Yn)

= 0.5n∏n
i=1 {(1 + 0.5 · Yi)/2}

We will reject the null hypothesis if the observed value of this statistic is less than some critical value w∗:
0.5n∏n

i=1
{(1+0.5·yi)/2}

< w∗

(c) Suppose now that n = 1. Calculate the p-value of the test if you observe y = 0.5. You should be able
to get to a number.

The p-value is the probability of obtaining a test statistic at least as small as the observed value of the test statistic, given
that the null hypothesis is true. In this case, that is calculated as

p− value = P

(
0.5

{(1 + 0.5 · Y )/2} ≤
0.5

{(1 + 0.5 · 0.5)/2} |θ = 0
)

= P (1.25 ≤ 1 + 0.5Y |θ = 0)
= P (Y ≥ 0.5|θ = 0)

=
∫ 1

0.5
0.5dy

= 0.5(1− 0.5)
= 0.25

(d) Still working with n = 1, find the rejection region of the test.

We will reject for values of y at least as large as the critical value y∗ at which the p-value is 0.05.

0.05 = P (Y ≥ y∗|θ = 0)

=
∫ 1

y∗
0.5dy

= 0.5(1− y∗)

Solving for y∗, we obtain y∗ = 0.9.

Problem 2

We have previously shown that if X ∼ Binomial(n, θ), then the maximum likelihood estimator θ̂ = X/n has expected
value θ and variance θ(1 − θ)/n. Regarding X as a sum of results of iid Bernoulli trials, find an approximation to the
distribution of θ̂ if n is large. Use your approximation to find an approximate 95% confidence interval for θ. This is the
confidence interval for θ that is typically taught in introductory statistics courses.

Let Xi ∼ Bernoulli(θ) denote the outcome of trial number i, so that X =
∑n
i=1 Xi. By our theorem about the asymptotic

approximate distribution of the MLE, θ̂ ∼ Normal
(
θ, 1

I(θ̂)

)
, which can be written as θ̂ ∼ Normal

(
θ, θ̂(1−θ̂)

n

)
.

Denoting the qth quantile of the standard normal distribution by z(q), it therefore follows that
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P

z(α/2) ≤ θ̂ − θ√
θ̂(1−θ̂)
n

≤ z(1− α/2)


⇒P

z(α/2)

√
θ̂(1− θ̂)

n
≤ θ̂ − θ ≤ z(1− α/2)

√
θ̂(1− θ̂)

n


⇒P

−θ̂ + z(α/2)

√
θ̂(1− θ̂)

n
≤ −θ ≤ −θ̂ + z(1− α/2)

√
θ̂(1− θ̂)

n


⇒P

−θ̂ + z(α/2)

√
θ̂(1− θ̂)

n
≤ −θ ≤ −θ̂ + z(1− α/2)

√
θ̂(1− θ̂)

n


⇒P

θ̂ − z(α/2)

√
θ̂(1− θ̂)

n
≥ θ ≥ θ̂ − z(1− α/2)

√
θ̂(1− θ̂)

n


⇒P

θ̂ − z(1− α/2)

√
θ̂(1− θ̂)

n
≤ θ ≤ θ̂ − z(α/2)

√
θ̂(1− θ̂)

n



An approximate (1− α)100% confidence interval for θ is[
θ̂ − z(1− α/2)

√
θ̂(1−θ̂)
n , θ̂ − z(α/2)

√
θ̂(1−θ̂)
n

]

Problem 3

Consider a situation in which we’ve observed x1 = 1, x2 = 2, and x3 = 4. Calculate the bootstrap distribution of the
median. Your answer should be in the form of a table listing possible values of the median and their probabilities. (Hint:
there are 27 possibilities, and they are all equally likely). Use the distribution to find a 90% confidence interval for the
median based on the bootstrap percentile method. Is it appropriate to use this approach? Why or why not?

The bootstrap distribution of the median consists of the medians of all possible samples of size 3 drawn with replacement
from the set {1, 2, 4}. If you list those out, you will find that there are 27 such samples. For 7 of them, the median is 1:
the one sample where 1 was selected three times, three samples where 1 was selected twice and 2 once, and three samples
where 1 was selected twice and 4 was selected once. By a similar argument, the median is 4 in 7 of the samples. The
median is 2 in the remaining 13 samples. Our bootstrap distribution of the median therefore is:

P(median = 1) = 7/27 P(median = 2) = 13/27 P(median = 4) = 7/27

Noting that 1.35/27 = 0.05, the 5th percentile of the bootstrap distribution of the median is 1 and the 95th percentile of
the bootstrap distribution of the median is 4. Therefore, a 90% bootstrap confidence interval for the median is [1, 4].

Using the bootstrap percentile method would be a terrible idea in this example, because our sample size is too small for
the bootstrap distribution to approximate the sampling distribution well. The bootstrap percentile method in particular
should not be used with small sample sizes.
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