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In our example

X ∼ Binomial(16, p)

• p is an unknown, fixed number that we want to estimate
• X is a random variable: we may observe a different number every time we run the experiment due to

random chance (which babies are selected or the study, etc.)

We observe x = 14 and will estimate p by choosing the value for which the probability of the observed data is
highest:

p̂ = arg maxfX(x|p) =
(

n
x

)
px(1− p)n−x

Think of this as a function of p, holding fixed the observed value of x.

L(p|x) = fX(x|p) =
(

n
x

)
px(1− p)n−x

We want to maximize this: find p̂MLE such that L(p|x) ≤ L(p̂MLE |x) for every value of p

Note: it’s almost always easier to maximize the log-likelihood, `(p|x) = log {L(p|x)}.

This will give us the same estimate:

• log(w) is an increasing function: w1 < w2 ⇔ log(w1) < log(w2)
• Plug in L(p|x) for w1 and L(p̂MLE |x) for w2:

– L(p|x) < L(p̂MLE |x)⇔ log(L(p|x)) < log(L(p̂MLE |x))
– So p̂MLE maximizes the likelihood if and only if it maximizes the log-likelihood

In this example, we find the log-likelihood, differentiate, solve for p to find a critical point, and verify the
critical point is a maximum with a second derivative test.

More generally

We have random variables X1, . . . , Xn

We model them as following some distribution with unknown parameters θ.

We will estimate θ by choosing the value for which the probability of the observed data is highest.

The likelihood function is:

L(θ|x1, . . . , xn) = fX1,...,Xn
(x1, . . . , xn|θ)

If X1, . . . , Xn are independent and identically distributed, then we can go one step further:

L(θ|x1, . . . , xn) = fX1,...,Xn
(x1, . . . , xn|θ)

= fX1(x1|θ) · · · fXn
(xn|θ)

=
n∏

i=1
fXi

(xi|θ)

In this case, the log-likelihood is:
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`(θ|x1, . . . , xn) = log {L(θ|x1, . . . , xn)}

= log
{

n∏
i=1

fXi
(xi|θ)

}

=
n∑

i=1
log {fXi

(xi|θ)}
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